DCA and CancerDCA as a Cancer Treatment - Sodium Dichloroacetate

Cancer Research 59, 5586-5595, November 1, 1999]

© 1999 American Association for Cancer Research

The Apoptotic Effects and Synergistic Interaction of Sodium Butyrate and MG132 in Human Retinoblastoma Y79 Cells

Michela Giuliano, Marianna Lauricella2, Giuseppe Calvaruso, Maria Carabillò, Sonia Emanuele, Renza Vento and Giovanni Tesoriere3
Institute of Biological Chemistry, University of Palermo, 90127 Palermo, Italy

This study deals with the apoptotic effect exerted on human retinoblastoma Y79 cells by both sodium butyrate and an inhibitor of 26S proteasome [z-Leu-Leu-Leu-CHO (MG132)] and their synergistic effect. Exposure to sodium butyrate (1–4 mM) induced an accumulation of cells in the G2-M phase that was already visible after 24 h of treatment, when morphological and biochemical signs of apoptosis appeared only in a small number of cells (5–10%). Thereafter, the apoptotic effects increased progressively with slow kinetics, reaching a maximum after 72 h of exposure, when they concerned a large fraction of cells (>75% with 4 mM sodium butyrate). Sodium butyrate stimulated the conversion of procaspase-3 into caspase-3 and also induced the cleavage of poly-(ADP-ribose) polymerase and lamin B, two hallmarks of apoptosis. All of the apoptotic signals were suppressed by benzyloxy carbonyl-Val-Ala-Asp-fluoromethylketone (a general inhibitor of caspase activities), whereas acetyl-Asp-Glu-Val-Asp aldehyde, a specific inhibitor of caspase-3 activity, only induced a partial reversion of the apoptotic effects. Sodium butyrate also decreased the Bcl-2 level, whereas it increased the Bax level and stimulated the release of cytochrome c from the mitochondria, an event that was most likely responsible for the activation of caspase-3. Finally, sodium butyrate activated 26S proteasome, the major extralysosomal degradative machinery, which is responsible for the degradation of short-lived proteins. Consequently, the levels of p53, N-myc, and IB (factors that play regulatory roles in apoptosis) diminished, whereas the nuclear level of nuclear factor B concomitantly increased. Treatment of Y79 cells with MG132 induced apoptosis with more rapid kinetics than with sodium butyrate. The effects appeared after 8 h of incubation, reaching a maximum at 24 h, and they were accompanied by increased levels of N-myc, p53, and IB. MG132 also favored the release of cytochrome c from the mitochondria and increased the activity of caspase-3. When Y79 cells were exposed to combinations of sodium butyrate and MG132, the latter compound suppressed the decreasing effect induced by sodium butyrate on the levels of p53, N-myc, and IkB and the increasing effect on the nuclear level of nuclear factor B. Moreover, an increase in the level of Bax and an enhancement in the release of cytochrome c from the mitochondria were observed. Clear synergistic effects concerning the activation of both caspase-3 and apoptosis were induced by a combination of suboptimal doses of sodium butyrate and MG132. The results support the conclusion that MG132 potentiates the apoptotic effect of sodium butyrate by suppressing its stimulatory effect on 26S proteasome activity. Synergistic interactions between butyrate and inhibitors of proteasome could represent a new important tool in tumor therapy and, in particular, the treatment of retinoblastoma.