Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP

Young H. Ko a,b,*, Barbara L. Smith a, Yuchuan Wang a, Martin G. Pomper a, David A. Rini c, Michael S. Torbenson d, Joanne Hullihen b, Peter L. Pedersen b,*

a The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, United States
b Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, United States
c Department of Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, United States
d Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, United States

Received 25 August 2004
Available online 25 September 2004

Abstract

A common feature of many advanced cancers is their enhanced capacity to metabolize glucose to lactic acid. In a challenging study designed to assess whether such cancers can be debilitating, we seeded hepatocellular carcinoma cells expressing the highly glycolytic phenotype into two different locations of young rats. Advanced cancers (2–3 cm) developed and were treated with the alkylating agent 3-bromopyruvate, a lactate/pyruvate analog shown here to selectively deplete ATP and induce cell death. In all 19 treated animals advanced cancers were eradicated without apparent toxicity or recurrence. These findings attest to the feasibility of completely destroying advanced, highly glycolytic cancers.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Advanced cancers; Liver/colon cancer; Cancer therapy; 3-Bromopyruvic acid; ATP depletion

Cancer is frequently asymptomatic reaching an advanced stage where treatment options are limited, e.g., liver cancer [1]. Significantly, such cancers frequently exhibit a highly glycolytic phenotype [2,3] dependent on the expression of hexokinase II [4]. In fact, it has been demonstrated that human liver cancers derived from metastatic colorectal cancer express enhanced levels of this enzyme [5]. Although the highly glycolytic phenotype has provided the basis for an emerging technique for cancer detection [6], i.e., FDG-positron emission tomography, it has not been widely exploited as a therapeutic target with the mitochondria for facilitating ATP depletion and cancer destruction. Here, we report how advanced cancers can be selectively destroyed using this approach.

Materials and methods

Cell source, passage, culture, and viability or ATP content ±3-BrPA. A highly glycolytic hepatocellular carcinoma (HCC) line “AS-30D” [7,8] was used and maintained (Fig. 1A) in female Sprague-Dawley rats (Charles River). For culture, cells (~1 × 10⁶) were seeded on a six-well plate in 2 ml RPMI 1640 medium (Invitrogen) containing 10% fetal bovine serum plus 1x antibiotic-antimycotic mixture (Invitrogen) at 37 °C for 3 h in a CO₂ incubator. Hepatocytes (~1.5 × 10⁶) were fresh from Cambrex. Cell viability ± 3-BrPA (Sigma) was monitored using the MTT assay (Sigma). For monitoring cell ATP levels, methods of culture using six-well plates and 3-BrPA treatment were as above. Then,
Fig. 1. HCC cells and 3-BrPA. (A) Growth and isolation of HCC cells (AS-30D). (B) Structure and chemical reactivity of 3-BrPA. (C) 3-BrPA-induced depletion of ATP in HCC cells (Left) and loss of viability (Right). (D) Intermediates (Center and Right) in the HCC death pathway.
100 μl aliquots of cells, three for each of the six wells, were removed and transferred into wells of the white culturePlate-96 (Perkin-Elmer). ATP was measured according to Perkin-Elmer using their cell lysate and ATPLite solutions, and Victor 1420 Multilabel Counter.

Induction of advanced cancers and therapy with 3-BrPA. Procedures adhered to Johns Hopkins University Animal Care and Use Committee guidelines. “Advanced cancer” is defined here in the rat as either a collection of HCC cells in the abdominal cavity that cause it to be become extended (Fig. 1A) or a solid HCC of 2–3 cm (maximal dimension). To induce ascites tumor cell masses and abdominal tumors, 1 ml, 2.4 x 10^7 HCC cells was injected i.p. (Fig. 1A). This resulted in 5–6 days in ~ 40 ml ascites fluid filled with tumor cells (Fig. 1A), and where indicated, also in advanced spherical tumors 2–3 cm in diameter. To induce tumors in the upper back, 1 ml, 2.4 x 10^7 HCC cells was injected s.c. Non-spherical tumors of ~ 3 cm (maximal dimension) developed in about 7–10 days. Without treatment, rats hosting HCC cells in ascites form must be euthanized within 7–8 days and in solid form in about 14–21 days. For therapy, animals bearing tumor cells in the abdominal cavity, or together with a spherical tumor (2–3 cm diameter), were treated after 5–6 days with an i.p. injection of 1 ml freshly prepared 2.0 mM 3-BrPA in 1x PBS, pH 7.5, and then for 4 days with the same dosage. The animal named “Two Dottie” also received seven injections of 1 ml of 2.0 mM 3-BrPA on separate days at the tumor site. Those animals bearing tumors 1–2 cm (maximal dimension) in the upper back that were subjected to FDG PET prior to induction of 3-BrPA was into the tumor. The remaining animals containing large tumors (~ 3 cm maximal dimension) were treated on an individual basis depending on each tumor’s responsiveness to 3-BrPA (Table 1).

PET imaging. Rats fasted 12 h with water ad libitum were anesthetized i.p. with 75 mg/kg ketamine and 10 mg/kg xylazine (Abbott Park) in 100–200 μl for induction and subjected to halothane (1% at 1 L/min). FDG (350.0 ± 12.7 MBq, 0.945 ± 0.342 mCi; range 32.7–57.7 MBq, 0.884–1.56 mCi) was injected in the tail vein (10–15 s bolus) in 150 l.

The chemical agent 3-BrPA depletes ATP stores and inhibits HCC cell viability

For therapy, we selected the alkylating agent 3-BrPA [13]. This was based on the hypothesis that because of its

Table 1

<table>
<thead>
<tr>
<th>Animal No.</th>
<th>Animal ID</th>
<th>Group ID</th>
<th>Tumor implantation site</th>
<th>Tumor development area</th>
<th>Method of treatment</th>
<th>Survival time (to date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Star</td>
<td>1</td>
<td>AC</td>
<td>AC</td>
<td>IP</td>
<td>Alive (>1.3 year)</td>
</tr>
<tr>
<td>2</td>
<td>Tiny 9</td>
<td>1</td>
<td>AC</td>
<td>AC, LA</td>
<td>IP</td>
<td>Alive (>1.3 year)</td>
</tr>
<tr>
<td>3</td>
<td>Tip</td>
<td>1</td>
<td>AC</td>
<td>AC</td>
<td>IP</td>
<td>Alive (>1.3 year)</td>
</tr>
<tr>
<td>4</td>
<td>One Dottie</td>
<td>1</td>
<td>AC</td>
<td>AC, LA</td>
<td>IP, D</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>5</td>
<td>Two Dottie</td>
<td>1</td>
<td>AC</td>
<td>AC, LA</td>
<td>IP</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>6</td>
<td>Three Dottie</td>
<td>1</td>
<td>AC</td>
<td>AC, LA</td>
<td>IP</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>7 → 12</td>
<td>C1 → C6</td>
<td>1</td>
<td>AC</td>
<td>AC, LA</td>
<td>IP, saline (control)</td>
<td>6–7 days (euthanized)</td>
</tr>
<tr>
<td>13 → 20</td>
<td>C7 → C14</td>
<td>1</td>
<td>AC</td>
<td>AC</td>
<td>IP, saline (control)</td>
<td>6–7 days (euthanized)</td>
</tr>
<tr>
<td>21</td>
<td>B1</td>
<td>2</td>
<td>UB</td>
<td>UB, S</td>
<td>D, SC, IP</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>22</td>
<td>B2</td>
<td>2</td>
<td>UB</td>
<td>UB</td>
<td>D</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>23</td>
<td>B3</td>
<td>2</td>
<td>UB</td>
<td>UB, S</td>
<td>D, SC, IP</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>24</td>
<td>R1</td>
<td>2</td>
<td>UB</td>
<td>UB</td>
<td>D</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>25</td>
<td>R2</td>
<td>2</td>
<td>UB</td>
<td>UB, S</td>
<td>D</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>26</td>
<td>R3</td>
<td>2</td>
<td>UB</td>
<td>UB</td>
<td>D</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>27</td>
<td>R4</td>
<td>2</td>
<td>UB</td>
<td>UB, S</td>
<td>D, SC, IP</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>28</td>
<td>R6</td>
<td>2</td>
<td>UB</td>
<td>UB, S</td>
<td>D, SC</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>29</td>
<td>B3*</td>
<td>2</td>
<td>UB</td>
<td>UB</td>
<td>D</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>30</td>
<td>B4*</td>
<td>2</td>
<td>UB</td>
<td>UB</td>
<td>D</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>31</td>
<td>B5*</td>
<td>2</td>
<td>UB</td>
<td>UB</td>
<td>D</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>32</td>
<td>R5*</td>
<td>2</td>
<td>UB</td>
<td>UB</td>
<td>D</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>33</td>
<td>Sweetie</td>
<td>2</td>
<td>UB</td>
<td>UB</td>
<td>IP</td>
<td>Alive (>7 months)</td>
</tr>
<tr>
<td>34</td>
<td>Chubbet</td>
<td>2</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Alive (>7 months)</td>
</tr>
</tbody>
</table>

Abbreviations used are: AC, abdominal cavity; LA, lower abdomen; UB, upper back; S, side; IP, intra-peritoneal; SC, subcutaneous; D, direct (locally); and * Employed in PET imaging.

Results and discussion

The chemical agent 3-BrPA depletes ATP stores and inhibits HCC cell viability

For therapy, we selected the alkylating agent 3-BrPA [13]. This was based on the hypothesis that because of its
Fig. 2. Complete regression of an advanced abdominal tumor (HCC) after 3-BrPA Therapy. (A) Advanced HCC in “Two Dottie.” (B) Human equivalent. (C) Different treatment stages. (D) Tumor histopathology.
Fig. 3. (A) Preparation for FDG-PET. (Upper left) Rats R5, B3, B4, and B5 were allowed to develop tumors (HCCs). (Upper center) Positional designations for tumors. (Upper right) Pseudo-signal intensity bar. "yellow," increased glucose consumption. (B) FDG-PET images of tumors on R5, B3, B4, and B5 Before and 12 days after 3-BrPA therapy. Therapy involved eight treatments. (C) Rat B1 as one example of nine rats each bearing an advanced tumor (~3 cm) eradicated by 3-BrPA therapy. (Center) Rat B1 bearing a large advanced tumor. (Left) Human equivalent. (Right) Rat B1 one week after 3 weeks of 3-BrPA therapy.
structural similarity to lactate (Fig. 1B), the reactive 3-BrPA may enter cancer cells on the same transporter that exports lactate and then induce ATP depletion. Although earlier work [14,15] showed that 3-BrPA inhibits in vitro the cell’s two ATP producing systems, glycogenolysis and mitochondria, and has antitumor activity, the most critical support for the above hypothesis is presented in Figs. 1C and D. These data show directly that 3-BrPA induces ATP depletion and loss of HCC cell viability. In contrast, hepatocytes show resistance to 3-BrPA. These findings provided support for an ATP depletion-anticancer strategy (see also Supplementary material).

HCC cells growing internally in the abdominal cavity of test animals, and all advanced tumors (HCCs) projecting externally, regressed, and disappeared after 3-BrPA therapy

Table 1 provides information about the 34 female rats in this study divided into Groups 1 and 2. Group 1 animals, named “One Dottie,” “Two Dottie,” “Three Dottie” “Tiny 9” “Star,” and “Tip,” had their abdominal cavities filled with rapidly proliferating HCC cells, and the first four also had a spherical tumor (2–3 cm diameter) projecting from their lower abdomen. Fig. 2A shows “Two Dottie” facing her cage revealing the large tumor and its reflection while Fig. 2B presents the predicted human equivalent. “Two Dottie” and the other five animals were treated for five successive days with a single 3-BrPA injection/day into the abdominal cavity. Subsequently, “Two Dottie” also received seven injections on separate days at the tumor site. In 1 week, the extended abdomens regressed in all six animals and in 1 month the tumors completely disappeared. Fig. 2C summarizes the disappearance of the tumor in the abdomen of “Two Dottie.” These animals received no additional therapy and showed no tumor recurrence. With the exception of “Tiny Nine” who died tumor free 1.3 years after treatment, the remaining five animals are alive (Table 1). In contrast, all control animals (14 total), treated with saline rather than 3-BrPA, had to be euthanized after only 7–8 days. Histopathology of tumors derived there from showed a localized region (Fig. 2D) indicative of in decreased glucose consumption. In sharp contrast, after a 12 day period in which 3-BrPA was injected directly into the tumor site of each animal on eight different days causing tumor regression and disappearance, the resultant FDG-PET analyses showed no abnormal glucose consumption. Region of interest analysis of those images showed a measurable decrease in glucose consumption by the tumor. Taking all four animals, the decrease in tumor/background radioactivity was significant between the pre- and post-treatment scans ($P = 0.012$). Moreover, there has been no tumor recurrence for >7 months (see also Supplementary material).

All advanced solid tumors (HCCs) growing in the upper backs of test animals also regressed and disappeared following treatment with 3-BrPA

The remaining nine animals in Group 2 (B1, B2, B6, R1, R2, R3, R4, R6, and Sweetie) provided the greatest therapeutic challenge as tumors in each became advanced, i.e., ~3 cm (maximal dimension) and tended to spread to one of the front limbs (Fig. 3C, center, and human equivalent, left). Because of the aggressiveness of these tumors, several treatment approaches with 3-BrPA were investigated (Table 1). Regardless of the approach, further growth of each tumor in the nine animals was arrested, and over a 2–4 week period tumors in all animals regressed and disappeared (Fig. 3C, right, as one example). For >7 months there has been no recurrence (see also Supplementary material for additional examples).

In summary, advanced cancers growing either internally or externally were eradicated in all 19 treated animals using a simple unique ATP depletion strategy, thus providing “proof of principle” that it is possible to defeat quite vicious cancers and spare life at the edge.

Acknowledgments

Drs. Paul Talalay and Donald Coffey are acknowledged for valuable discussions and James Fox and David Blum for technical assistance. Y.H.K. is grateful also to Ilona McClintick and Dr. Ann Morrill for encouragement.
Appendix. Supplementary material

References

ADVANCED CANCERS: ERADICATION IN ALL CASES USING 3-BROMOPYRUVATE THERAPY TO DEPLETE ATP

Young H. Ko, Barbara L. Smith, Yuchuan Wang, Martin G. Pomper, David A. Rini, Michael S. Torbenson, Joanne Hullihen, and Peter L. Pedersen

Supporting Text, Table, and Figures

(See parent manuscript for Table 1 and Figures 1-3.)

ATP Depletion Induced by 3-BrPA in Tumor Cells vs Normal Cells. Data in Fig. 4 further substantiate the selective ATP depletion strategy used in this study to eradicate cancers in all 19 animals studied. (See parent manuscript.) Here, it is shown that when 50 µM 3-BrPA is added to AS-30D HCC cells, known to be highly malignant [1, 2], it completely dissipates cellular ATP levels within 30 min while the same addition to freshly isolated hepatocytes (normal cells) is without effect even after 1.5 h. As indicated in the parent article and supported by an earlier study [3], our hypothesis for the selectivity of 3-BrPA in killing HCC cells is based on the fact that, in contrast to hepatocytes, these cells exhibit the highly glycolytic phenotype [2] common to many cancers [4, 5]. Therefore, the lactate (or similar transporter) is likely to be elevated and unable to distinguish lactate from its reactive structural analog 3-BrPA, thus allowing its entry into the HCC cells and subsequent inhibitory interactions with the ATP producing machinery (glycolysis and mitochondrial oxidative phosphorylation). Considering that the highly glycolytic phenotype is one of the most common to cancers [4], and the basis of one of the most common
techniques to detect them, i.e., FDG-PET [6], then numerous animal and human tumors exhibiting this phenotype are likely candidates in the future for 3-BrPA therapy.

Summary of Data Collected in FDG-PET Analysis of Tumor Regions on the Upper Backs of Animals R5, B3, B4, and B5 Prior to and after Therapy with 3-BrPA. The actual images of the FDG-PET analysis are presented in Fig. 3 of the parent manuscript while Table 2 presented here summarizes the actual data obtained. Here, it can be seen that the subgroup consisting of animals R5, B3, B4, and B5 were subjected to FDG-PET on two separate occasions 12 days apart, i.e., before and after treatment with 3-BrPA. Notably, the SUVs which are indicators of FDG uptake dropped significantly between these two imaging sessions (p = 0.012) indicating a substantial treatment effect. Subsequently, this subgroup has survived for more than 7 months and gained weight, further supporting the beneficial effects of therapy with 3-BrPA.

Additional Visual Examples of the Eradication of Advanced Cancers in Animals Studied Here. The tumor (AS-30D HCC) shown in Fig. 5 in the upper back of the animal R4 is clearly advanced occupying not only part of the upper back (upper left panel) but progressing down the right side (upper right panel). Following initial therapy with 3-BrPA, much of the tumor on the upper back is eliminated, and additional therapy eliminates all but a small part of the side tumor (shown in pink/yellow in the middle panels). Hair growing in this area is lost also. Without further therapy, the remaining tumor darkens as it dies completely. Subsequently, the hair lost by R4 returns (bottom panel). The tumor shown in Fig. 6 (upper panel) located partially in the upper back of R6 has extended down the side into a front leg slowing the animal’s mobility. Initial therapy with 3-BrPA causes the tumor mass occupying the leg to recede (center left panel) and additional therapy causes the tumor in the upper back to harden (center middle panel) and fall off (right middle panel). Hair then returns (bottom panels). [Photographs by Y.H.K and D.B.]
Photographic Gallery of All 19 Animals that Acquired Advanced Cancers and Were Freed of These Cancers by Treatment with 3-BrPA. The photographs shown in Fig. 7 (A-D) were taken on June 24, 2004 over one year after cancers growing in/on “Star”, “Tiny 9”, and “Tip” had been eradicated, and 6-7 months after cancers growing on the remaining 16 animals had been eradicated. Chubbet, the 20th animal, served as one of the controls in which cancer was not induced. A group photograph of the same 19 cancer survivors is shown at the bottom of Figure 7D. The individual and group photographs attest to fact that as of June 24, 2004 all 19 animals were alive and active. [Photographs by Norman Barker, Department of Pathology, JHUSOM]

Original and More Recent Weights of All 19 Animals that Acquired Advanced Cancers and Were Freed of These Cancers by Treatment with 3-BrPA. Fig. 8A summarizes both the initial weights of all 19 animals and their weights as of June 24, 2004, while Fig. 8B summarizes the difference. The initial and June 24th weight of Chubbet, a non-cancer control, is shown also. On average the initial weight of all animals was near 180 g, and the average weight gained was 267 g. Therefore, all 19 cancer survivors ate well and grew from early to later adulthood in a normal manner. Today all animals remain healthy and active except “Tiny Nine” who due to complications from ageing was euthanized on July, 26, 2004. She remained tumor free.

Supporting References

3

Figure Legends And Table 2

(See parent manuscript for Figures 1-3.)

Figure 4. Comparison of the Effect of 3-BrPA on the ATP Content of Hepatocytes (Normal Cells) and AS-30D HCC cells as a function of time. Experiments were carried out exactly as described under Materials and Methods in the parent manuscript. Both fresh intact hepatocytes and AS-30D HCC cells were exposed to 50 μM 3-BrPA for the times indicated, after which they were subjected to ATP content analysis also as described under Materials and Methods in the parent manuscript.

Figure 5. Response of an Advanced Tumor (AS-30D HCC) in the Upper Back and Right Side of the Animal R4 to Treatment with 3-BrPA. As indicated in Table 1 of the parent manuscript, the animal R4 received at different times direct, subcutaneous, and intraperitoneal injections of 3-BrPA causing the large tumor (upper photographs) to first recede and form an open wound-like area (center photographs), and finally to heal with replacement of lost hair.
Once healed (in about one month), no further therapy was applied and there has been no recurrence of the tumor for over 7 months (bottom photograph).

Figure 6. Response of an Advanced Tumor (AS-30D HCC) in the Upper Back and Left Front Limb of the Animal R6 to Treatment with 3-BrPA. Here the mobility of R6 has become partially impaired. As indicated in Table 1 of the parent manuscript, R6 received at different times direct, and subcutaneous injections of 3-BrPA but no intraperitoneal injection. Within one month, the large tumor had regressed completely and R6 regained full mobility of her left front limb. As for R4 above, no further therapy was applied and there has been no recurrence of the tumor for over 7 months.

Figure 7. Individual Photographs of Each of the 19 Cancer Survivors and of One of the Non-Cancer Controls (Chubbet). Photographs were taken on June 24, 2004 over one year after advanced cancers growing in/on “Star”, “Tiny 9”, and “Tip” had regressed and disappeared in response to 3-BrPA therapy, and 6-7 months after advanced cancers on the remaining 16 animals had disappeared. To date, there has been no tumor recurrence in any of the remaining animals. A group photograph of all 19 cancer survivors is shown at the bottom of Fig. 7D.

Figure 8. A. Initial Body Weight (light shading) and Weight on June 24, 2004 (dark shading) of the 19 Cancer Surviving animals, and of the Non-Cancer Control (Chubbet). The initial average weight of all animals upon arrival was 180 g. B. Summary of Body Weight Gain. On average the animals gained 267 g since their arrival. There has never been a loss of appetite or weight observed for any of the animals during the course of this study. As indicated above Tiny 9 has since passed away of age-related causes but remained tumor-free.
Table 2
(See parent manuscript for Table 1.)

FDG-PET Analysis

<table>
<thead>
<tr>
<th>Subject</th>
<th>Study</th>
<th>Weight (g)</th>
<th>SUV<sub>t</sub></th>
<th>SUV<sub>b</sub></th>
<th>SUV<sub>t/b</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>R5</td>
<td>1</td>
<td>201</td>
<td>97.4</td>
<td>14.3</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>238</td>
<td>13.8</td>
<td>9.7</td>
<td>1.4</td>
</tr>
<tr>
<td>B3</td>
<td>1</td>
<td>208</td>
<td>30.6</td>
<td>6.4</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>240</td>
<td>10.5</td>
<td>4.5</td>
<td>2.3</td>
</tr>
<tr>
<td>B4</td>
<td>1</td>
<td>200</td>
<td>48.3</td>
<td>6.0</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>229</td>
<td>11.3</td>
<td>8.3</td>
<td>1.4</td>
</tr>
<tr>
<td>B5</td>
<td>1</td>
<td>206</td>
<td>18.2</td>
<td>2.7</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>238</td>
<td>10.5</td>
<td>5.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Average</td>
<td>1</td>
<td>204 ± 4</td>
<td>--</td>
<td>--</td>
<td>6.6 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>236 ± 5</td>
<td>--</td>
<td>--</td>
<td>1.7 ± 0.4</td>
</tr>
</tbody>
</table>

Studies 1 and 2 were performed 12 days apart; SUV_t and SUV_b are standardized uptake values for tumor and background, respectively (arbitrary units).
Figure 4

[3-BrPA] = 50 µM

Time, min

Cellular ATP level, %

0 20 40 60 80

AS-30D HCC

Hepatocytes
Figure 7C

One Dottie

Two Dottie

Three Dottie

Star

Tip

Tiny 9
Figure 8

A. Initial Body Wt

B. Present Body Wt

Gain in Body Weight, g

Star
Tiny
Tip
One-D
Two-D
Three-D
B1
B2
B3
B4
B5
B6
R1
R2
R3
R4
R5
R6
Sweetie
Chubbet

Average Gain = 267 g